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Abstract –It is not uncommon for young electrical engineers to 
overlook the influence of the insulation leakage on the electric 
field distribution at DC or slow-varying voltage. A classic 
problem is revisited: distribution of the electric field between 
two infinite parallel plates separated by two layers of isotropic 
insulation. Systematic mistakes ensuing from incorrect 
application of the boundary condition that is valid only for 
electrostatics are analyzed. Instead, a more general boundary 
condition should be used. It is obtained from the current 
continuity equation in its integral form and is expressed in 
terms of the normal components of the density of full current. 
The equivalent circuit approach is useful as a complementary 
method to analyzing the problem, especially when the 
conduction and displacement currents are commensurable. 
Numerical field solutions are given for two practical insulation 
systems. 
 

I. INTRODUCTION 
 

Electrical insulation in high-voltage apparatus is stressed 
by various voltage waveforms. They range from many MHz 
to 50/60Hz AC voltages and from fast transients to DC 
voltage. For many devices, slow transients are common. For 
example, a soft start in a precision power supply may 
continue several tens of seconds. In the same power supply 
very fast transients may occur during a load breakdown, e.g., 
a sparking in an X-ray tube. In long-pulse applications, a DC 
voltage is established in anywhere from microseconds to 
many milliseconds, the latter being the case for computer 
tomography.   

Good insulation design calls for the calculation of electric 
field that depends not only on geometry, property of 
materials, the voltage amplitude, etc., but on the voltage 
waveshape as well. For an experienced practicing high 
voltage engineer, no questions arise in differentiating 
between electric field distribution at AC, fast and slow 
transient and steady-state (DC) conditions in identical 
insulation systems. Of course, in DC systems, the conduction 
currents govern the field distribution, while during fast 
transient processes and at AC, presumably at a line frequency 
of 50Hz and higher, the displacement currents are of the 
major importance. Put alternatively, the material conductivity 
is dominant at DC, and the material permittivity is dominant 
at AC. This is a well-known code of practice [1-3].  

Surprisingly, very few of electrical engineering students 
that had taken regular undergraduate courses on 
electromagnetic fields identify or associate the electric field 
problem with insulation conductivity. The same is true with 
young high voltage engineers and electrical engineers en 
masse. Even more surprisingly, quite a few mature 
physicists, holding Ph.D. degrees, were perplexed when 
trying to calculate the distribution of the electric field in a 
capacitor with layered insulation at DC conditions (see 
below). This picture observed by the author during many 
years of professional communication and teaching clearly 
indicates that there is a gap between the courses on 
electromagnetic fields and the courses on high voltage 
engineering, at least on the undergraduate level. On the other 
side, it is uncommon to offer in these courses a crisp, lucid 
formulation of the distinction between the electric field 
distribution in real insulation at steady-state and at AC or 
time-varying conditions. Accordingly, the purport of this 
tutorial paper is offering such a formulation; it might save 
young electrical engineers some pain and embarrassment. 
 
II. CASE STUDY--FLAT CAPACITOR WITH LAYERED 

INSULATION 
 

Let us revisit a classic problem having basic importance 
in high voltage engineering--distribution of the electric field 
between two infinite parallel plates separated by two layers 
of isotropic insulation (Fig. 1).  
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Fig. 1. Flat capacitor with two layers of non-ideal isotropic 
insulation. 
 

The dielectrics are not ideal, which is reflected by the 
final values of their conductivities γ1, γ2. Voltage V that is 
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applied to the plates, is either a constant V0 (DC case), ramp, 
or a sinusoidal function of time V V tm= sinω . The 
examination will be further simplified by adopting ω=2π⋅50, 
and ascribing to the material properties concrete values: 
ε1=2.3ε0, ε2=5ε0, where ε1, ε2 are dielectric I, II permittivities, 
respectively, and ε0 is the permittivity of free space, 
γ1=10-15 Ω-1m-1, γ2=10-12 Ω-1m-1. (Dielectric I may be a 
polyethylene and dielectric II may be an epoxy compound.) 
Formation of space charge, temperature, frequency and field 
dependence of the dielectric properties, etc., are neglected at 
this stage. Thus, the problem is defined physically. How it is 
usually approached?  

 
A. Field Analysis 
 

Unfailingly, one recognizes that the problem is described 
by the Laplace equation in its simplest form: 
 

02

2

=
dx
d ϕ ,   (1) 

 
where ϕ is the potential and x the coordinate, as shown in 
Fig. 1. Integrating (1) in the layers, one readily obtains the 
following relations: 
 

 E1=const, E2=const,    (2) 
 

V=E1d1+E2d2,     (3) 
 

where E1, E2 are yet unknown electric field components in 
layers I, II, respectively. A boundary condition is necessary 
to find the relation between E1, E2. Here comes a common 
fallacy. Almost invariably, the boundary condition is written 
in its simplest, and best-known, form [1, 4, 5, 7, 8]  
 

21 nn DD = , or ε ε1 1 2 2E En n= ,  (4) 
 

where Dn1, Dn2 and En1, En2  are the normal components of 
the displacement vector and the electric field, respectively. 
The tangential components are zero in this case in view of 
symmetry. Equation (3), (4) yield the solution [4, par. 4.3.1]:  
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which is quite acceptable for the adopted values at 50Hz, 
since the conduction current is negligible compared to the 
displacement current. Note that this idea usually eludes the 
students, since they are guided by the boundary condition (4), 
which utterly discards the conductivity.  

However, (4) and (5) are not valid for a DC case (and, in 
a rigorous approach, never, if the conductivities are not zero), 
because the surface charge exists on the boundary between 
the dielectrics. The normal components of the electric field 
strength are related as follows: 

 
ε ε σ1 1 2 2E En n= + ,   (6) 

 
where σ is the surface charge density. Note that (6) is a 
proper boundary condition for the electrostatic problem only, 
when σ is prescribed. Otherwise, (6) serves solely for the 
calculation of σ, after the field distribution has been found 
[6]. This point is almost invariably missed. 

A more general boundary condition that is obtained from 
the current continuity equation in its integral form 
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is expressed in terms of the normal components of the 
current density δ: 
 

21 nn δδ = ,   (8) 
or 
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For sine waveforms, (9) transforms to 

 
( ) ( ) 222111 nn EjEj ωεγωεγ +=+ .  (9a) 

 
Note that δ  accounts for both the conduction (first 

member in (9)) and the displacement mechanism (second 
member in (9)). For most engineering applications, either the 
conduction current Eγ  is negligible compared to the 

displacement current 
t
E

∂
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or the other way around: 
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If the relation (10) holds, (9) transforms to its simplified form 
(4), and as such is commonly applied to high voltage field 
problems at 50/60Hz and higher frequencies. For this case 
study (50Hz), the ratio of the displacement current amplitude 
to that of the conduction current for layers I, II is 6.39⋅106 
and 1.39⋅104, respectively. 

In a DC field, the time derivatives are zero; therefore, 
boundary condition (9) contains only the media 
conductivities: 
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γ γ1 1 2 2E En n= .   (11) 
 

Since for the examined problem γ1<<γ2, the stress in the first 
layer is much greater than in the second: E En n1 2>> , and if 
d1 and d2 are commensurable, the solution is obtained 
immediately from (3):  
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The exact solution is identical to (5), where the permittivities 
are substituted by the conductivities: 
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Equation (11) is a well-known boundary condition that is 

applied to static field problems in conducting media. 
However, as mentioned already, given the problem Fig. 1, 
where seemingly insulating materials are shown, students fail 
to associate it with the proper boundary condition (11). 
Majority of them were not introduced to a more general 
boundary condition (9) in preceding courses. 

 
B. Equivalent Circuits 
 

A simpler approach, not involving field quantities, is 
using equivalent circuits; by obvious reasons, this approach 
has larger appeal to electrical engineers than to physicists. A 
quick glance at Fig. 1 readily yields an equivalent circuit 
Fig. 2, where  
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are resistances and capacitances of the layers per unit area.  
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Fig. 2. Equivalent circuit for flat capacitor with two layers of non-
ideal insulation. 
 

Solving the corresponding differential equations provides 
a solution for arbitrary voltage V waveforms allowing to find 
the voltages across the circuit components, and thus across 
the insulation layers. Fig. 3a illustrates the voltage 
distribution across 1-cm-thick layers at the application of a 

“long” pulse with a “slow” 30-s ramp, with the materials 
properties as defined for Fig. 1 (the graphics were 
conveniently obtained using a PSpice solver); Fig. 3b gives 
the same except the conductivities are swapped: 
γ1=10-12 Ω-1m-1, γ2=10-15 Ω-1m-1. The voltage distributions in 
Fig. 3a can be assessed, at least at the leading edge, using the 
frequency sweep of Fig. 3c.  
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Fig. 3. Solution for equivalent circuit Fig. 2 for parameters as 
defined for Fig. 1. Layers’ thickness d1=d2=0.01 m, ε1=2.3ε0, 
ε2=5ε0,; a -γ1=10-15 Ω-1m-1, γ2=10-12 Ω-1m-1, b - γ1=10-12 Ω-1m-1, 
γ2=10-15 Ω-1m-1, c - γ1=10-15 Ω-1m-1, γ2=10-12 Ω-1m-1. 
 

As simple as that, the equivalent circuit approach lacks 
physical insight and should be used as a complementary 
method in treating field problems in leaky media. In 
particular, the surface charge formation that is critical to the 
insulation functioning (it is responsible for the voltage 
reversal in Fig. 3) is totally hidden behind the circuit 
equations. Moreover, in more complex geometries calling for 
a numerical analysis, the circuit approach is quite impotent; it 
does not suggest a clue to defining the problem. A couple of 
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such examples are given in the following section. 
 

III. NUMERICAL EXAMPLES  
 

The first example makes use of a coil wound on a high-
quality plastic bobbin, e.g., polyethylene (ε1=2.3ε0), that is 
further potted in an epoxy (ε1=5ε0). In the below example, 
their conductivities are related as 1:100, respectively. 

  
a 

 
b 

Fig. 4. Distribution of electric field in potted coil. a – DC field 
(conduction problem); b – AC (electrostatic problem).   

Fig. 4 shows the field patterns in the form of 
equipotential lines for DC (a) and AC (transient) cases (b), 

respectively. The solution was obtained using Maxwell 2D 
SV software [9] in an axisymmetric approximation with the 
mesh size of about 20,000 triangles. Only half of the coil was 
modeled owing to mirror image symmetry in the R-θ-plane. 
The outer boundary is maintained at zero potential (except 
the R-θ-plane, where the normal component of the E-vector 
is zero), and a voltage of 100kV is applied to the coil. A 
similar problem was addressed in [10].  

For the DC case Fig. 4a, a large difference in the 
conductivities forces the field to concentrate in the bobbin 
leaving the potting largely unstressed at the yokes and the 
inner leg (to the left) of the core. The rationale of this design 
is relieving the potting material that is more prone to contain 
defects than its plastic counterpart [10]. On the opposite, the 
voltage is shared approximately equally by the plastic and 
potting at AC conditions (Fig. 4b).  

The second example depicts the field distribution in an 
X-ray tube-shield insulation system. Earlier, a similar 
problem was solved in [11]. With considerable 
simplification, the problem again was modelled in an 
axisymmetric approximation with the mesh size of about 
20,000 triangles. There are four distinctly different dielectric 
regions: vacuum inside the tube, the glass envelope, oil, and 
a plastic barrier.  

 

 
 

Fig. 3. Distribution of electric field (DC case to the left, AC to the 
right) in a shielded X-ray tube.  
 

Two cases have been simulated. For the steady-state 
analysis, the conductivities of materials control the field. In 
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the following simulations, the conductivities of vacuum, 
glass, oil and plastic, arguably, were taken in the following 
ratio: 10-13: 10-14: 10-13: 10-12: 10-13. Their relative 
permittivities were set as 1, 5.75, 2.25, 3.5, respectively. 
Note that the vacuum “conductivity” is very strongly field- 
and polarity dependent [12]. In some actual X-ray tubes, the 
dark currents increase typically by an order of magnitude for 
the field increase of 5% [13].  

Again, this example illustrates a striking difference 
between the DC and AC (transient) field distributions. The 
oil is largely unstressed in the first case, with tendency for 
even lower stress in the process of the oil aging. The plastic 
barrier is instrumental for the insulation functioning bearing 
the brunt of the applied voltage. At AC, the oil is stressed 
much stronger; contrary to the DC case, the field distribution 
would remain practically unaffected by time.  

Although in the above examples both the geometry and 
physical properties are treated with great simplification, the 
field analysis is useful in that it allows a) identifying the 
basic difference in operation under DC and AC, or transient 
conditions, and b) finding overstressed regions. An 
experienced designer may well manage the first part without 
investing time in detailed simulations using proper boundary 
conditions and equivalent circuits.  
 

IV. NONLINEAR ASPECTS  
 

After accepting the existence of a leakage current-
governed field distribution, one starts enquiring about more 
subtle non-linear aspects. The latter are of the utmost 
importance at DC or quasi-DC operation. A classic example 
is a DC power cable under current load. With the central 
conductor having high temperature, the field becomes 
stronger at the shield—the situation unthought-of at a line 
frequency (see, e.g., [3], [14]).   

In highly non-uniform fields, space charge effects caused 
by local ionization in the insulation body, field emission, etc., 
modify the field distribution considerably. These phenomena 
are not necessarily limited to the case of partial discharges 
occurring in the insulation cavities. In fact, a “steady-state” 
distribution is a misnomer at high stresses under the 
application of a DC voltage: the space and surface charges 
form and disappear rendering a dynamic field distribution. 
Similar phenomena are observed in moving media, e.g., in 
dielectric liquids under the application of a non-uniform 
electric field. Even in the absence of ionization, polar matter 
circulates because of the electro-convection. The driving 
forces that are proportional to the field gradient and the 
liquid (or gas) dipole moment are quite sufficient to provide 
effective mixing and cooling in various DC apparatuses, e.g., 
in oil-insulated power supplies. An example of a “gas pump” 
resulting in flame extinction is given in [15]. Owing to the 
movement, hot and cold regions having different 
conductivities (high and low, respectively) migrate, 
continuously modifying the electric field distribution. Such 
behaviour is extremely difficult to quantify, especially in 
ionized media. We note that although even commercial 
packages have non-linear solvers allowing modelling 

materials properties as a function of field and temperature, 
calculations of the DC electric field in complex structures 
seldom carry valuable quantitative information. An exception 
to this statement are the cases when dielectric properties are 
well-known [16]. However, we believe that even qualitative 
understanding is a valuable tool for successful design. 

 
 

V. CONCLUSION  
 

The above study shows that the boundary condition (9) 
provides clear physical basis to typical high voltage 
problems, where one must account for the insulation non-
ideality. On the contrary, the boundary condition (4) is 
misleading in that it does not contain the insulation 
conductivity; it should be introduced as a reduction of (9). 
Equation (6) does account for the conduction current but has 
no use for the electric field calculation in real-life insulation.  

More complicated cases, when the conduction and 
displacement currents are commensurable (for the examined 
problem of section II, it is a subherz range), should be treated 
more rigorously. Likewise, attention should be paid to non-
linear issues. Note that for simple insulation systems, such as 
multilayer flat, cylindrical or spherical capacitor, the problem 
is handled conveniently by using equivalent R-C circuits. 
This approach works well with electrical engineering 
students.  
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